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Abstract

We consider a deteriorating system subject to repair given partial information. The evolution
of the system is described by a non-homogeneous Markov process. Between replacements
the intensity of occurrence of minimal repairs is modulated by a measurable deterministic
control function. The revenue depends on the system state and the costs depend on the
level of control. Given the control value the revenue over a finite horizon is obtained.The
expected revenue is maximized by choosing an optimal control strategy using a deterministic
Hamilton-Jacobi equation.

1 INTRODUCTION

We optimize the revenue from a system subject to repair and maintenance. The system is subject to
stochastic deterioration when working and can be in one of two unobservable states. The observed
history of the process F}¥ is characterized by the counting process N; of minimal repair points. Using
the approach of Jensen (?), the intensity of minimal repairs is described by a stochastic measure which
depends on the system state X;. The flow of the process consists of a mixture of stochastic motions
resulting from the natural motion of the process which are controlled by a non-homogeneous Markov
process and the random jumps of the F/V-adapted control process us, t € R,. To model the effect
of covariate values, we consider the proportional intensity model (PIM) which is a generalized case
of the proportional hazard model introduced by (?). By using the Filtering theorem (?) an explicit
solution to the estimation of the system state with respect to F}¥ is derived. This solution transforms
the control problem above into an intensity control model adapted to the observable history. By using a
deterministic Hamilton-Jacobi Equation, in a Markovian manner, an optimal control process with respect
to the counting process of minimal repairs is obtained.

2 MODELLING (PSP)

The evolution of the process and the effect of the environmental factors on the system are incorporated in
the system state process (X;), t € RT with state space S = {1,2,...,m} whose transition between states
is controlled by the non-homogeneous Markov process with time dependent transition probabilities and
intensities matrix P(t) = (p;;(t)) and Q(t) = (gi;(t)). The occurrence of minimal repairs is described
by the counting process (N;),t € RT,Ny = 3~ -, I{1, <) defined on a measurable space (2, F) where
Ty < Ty, < ... < T, < ...is the sequence of repair time points. It is assumed that the intensity of
occurrence of repairs is a stochastic measure Ay, with smooth semi-martingale representation (SSM):

t
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Where 0 < \; < 00,i € S, \x,,t € RT is F progressive, My refers to the class of F-martingales with
paths which are right-continuous and left-limited (with My = 0). The function ¢;(i) = I;x,—;) is the
indicator process of the system state. We assume that the minimal repair process is stopped by an F;-
adapted failure time. If the lifetime of the system is measured by the F;-stopping time £, then N = (Ny)
is transformed to the process N® = (N;n¢) limited to the stopping time &. The process Nf again admits



following F;-SSM representations:

t
Nf:/o I(€ > s)Ax.ds + Mf = /ZAIXt_zg>t)+Mf (2)
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where ME is an F;-stopped martingale. The indicator process Z; = I(£ < t) describes the evolution of the
system lifetime and )\f = Ax,I(§ > t) can be realized as the Fy-intensity of NV; randomized by the random
failure time £. To model the lifetime of the process we assume that Z; admits a smooth F-semimartingale
representation with an F-martingale M € M such that its regression part is the F;-adapted Cox process
v = v(t, X;) where y(t, X¢) = Ao(t)1(Xy), t € RT where both the baseline intensity \o(t) and ¢ (z) are
bounded and non-decreasing. In terms of the above measures the SSM representation of (Z;) is given by

t
I(fgt):/o I(€ > s)ysds+ M, teR*' (3)

where (v;),t € RT is a progressively measurable with respect to the filtration F; with F fg |vs]ds < o0
for all t € RT and M7 = (M) € M,.

We solve the intensity control with partial information using the projected version of the indicator
process (p;),t € R given the sub-filtration F¥ = o {N, : 0 < s <t} , that is, p;(i) = E(p:(i)|F}) for
i € S. We use the smooth semi-martingale representation of I(£ < t) with respect to the sub-filtration
FN to change the information level and the state we use the projection theorem (?). For T, <t < Tn,+1
the projection formula yields the FV-SSM representation:

R(Ny,t —Tw) /szws R(Nyys — Ty, )ds + . (4)
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where R(N;,t — Tn,) = 1 — R(N;,t — Ty,) is the F}¥-adapted conditional survival probability,
R(Ny,t—Tn,) = E (I(§ = t)|F})), and 44(N) = 3" ,c s 4(t, 1) @i (i) R(Ny, t — T, ) is F} -progressively mea-
surable with 4, (N) = E(I(§ > t)v|F}). Since R(Ny,t —Ty,) has continuous paths of bounded variation
the martingale term M, is identically zero, the solution of the reduced integral equation [4] is

(t TNf
R(Nyyt —Thn,) = exp ( / Z’y (s,9)ps(1)d ) HR Ni,i,s —Tn,) (5)
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where R(Ny,i,s — Thn,) = exp ( (t=Te) ~v(8,%)Ps (i)ds) . We focus on modelling the inter-arrival times

distribution of minimal repairs. We use an alternative definition of a doubly stochastic poisson process
(?). The intensity term A$(N) in terms of R(Ny,i,t — Th,) can be written

X (N) = E(\;|FN) = (Zwt )(HR(Nt,z‘,sTm) (6)
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Where ¢ (i) = $4(i)I {Ty, <t < Tn,4+1}. Now, for each n € Ny let F},(v) be the regular conditional
distribution of the inter-arrival times Vi, 41 = T(n41) — T, To = 0 given FN-adapted measure )\f(n)
Then,

R Thn+v
Fu(v) = p(Vas = 0[AS(n)) = exp (— / S AR(n, iyt - an?(i)dt) (7)
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Where T,, <t < Ty,41 forn =0,1,2,....
If 1,41 denotes the expected value of (n + 1) inter-arrival minimal repair time then by using the
equation [7] we have

o) o Tn+v
Nn+1 :/0 Fn(v)dv:/o exp (/T ZAiR(n,i,t)aﬁ?(i)dt) dv (8)
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Since the integrand term of equation (8)depends on T, 1,+1 is a random measure. To deal with this we
restrict ourselves to an estimated version of 7,11. We use i, 41 the (n + 1)™ expected value of repair

times pp41 = E(Th41) = Zk 1 Tnt1

ESIN [e'e] Wn+v
fing1 = / F,(v)dv = / exp (—/ Z)\ R(n,i,t)@p (i )dt) dv forn>0. (9)
0 0
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We close this section by stating an explicit solution for the probability of the system state ¢;(i),i € S
adapted to the partial information V. The filtering theorem gives an explicit solution

L I Ajerz ()
¢1(J) = / ZSD i) {qij (s) + @5 (1) (A = Aj)} ds+z —op-(J) + %I{Tnzt} ;
ies n>1 Zi=1 P (i)
(10)
where ¢, (j) refers to the left limit.

3 MODELLING INTENSITY CONTROL

We assume that the intensity is controlled by a control function u and yields a revenue %, which depends
on the system state and is subject to a cost k;(u) which depends on the control level. To set up the PSP
model modulated by the control measure and to optimize the maintenance process, assume that i/ is the
set of R*-valued measurable control processes of the form u; = u(t, Ny(w)) where for each n € N T, u(t,n)
is FN-predictable and u; € U,t > 0,w € Q To each control u € U we associate a probability measure
(control dynamics) P,,u € U on (2, F). It is assumed that N; through transition rate ¢;(t) admits a
(P,, FN)-intensity A5 (u) of the form A (w,u) = A(t, Ny(w), us(w)), so that ¢*(t) = q1(¢,u). Thus, ¢*(t)
can be regarded as a key tool to turn the maintenance template into the intensity control model. In
addition, to each u € U we associate a nonnegative measure J(u):

J(u) = E, [ / (i, — K N 0N ) e — asXT] (1)

0

T is a positive time, u', is a nonnegative ftN -progressive process and kr, (u), ¢, are nonnegative .7:tN
predictable, and Fp-measurable random variable respectively. The measure J(u) associated to w is the
value function, p%,, indexed by the system state is the reward per unit of time such that (u2 < ). This
means raising the wear level of the system decreases the revenue obtained over inter-arrival time. The
minimal repair cost at the n-th repair is kr, (u) and cost of maintenance at the action time and ¢% _ is
the final cost of replacement and inspection at terminal time 7. By projection on the observed history
of the process the FN-adapted version of J(u) is

/ <Zumt t,Neyu) > Nigp (i) t,i,t—TNJdt—Z«owT(i)ﬂ (12)
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J(u) =

As seen, the intensity control problem is subject to Markovian Controls. More precisely, J(u)(Vu € U)
is characterized just with respect to F/¥-adapted measure ¢;, or equivalently N;. Following we re-
strict ourselves to solving the optimal control problem over finite horizon in a Markovian Control
manner. To achieve this aim which is to select an optimum strategy {u; = uj(t,n): uf € U} so that
J(u*) = sup,ey; J (u) the “deterministic Hamilton-Jacobi Equation” (?) is employed.

Corollary 1. Let for the measures N (t,n,u), $¥(i) = @(t,n,u) (i), and k(t,n,u) where are independent
of w there exists for each n € Ny a function V (t,n) such that

% + sup {;ﬁ(t,n,u) V(t,n) = V(t,n—1) = k(t,n, )] + Y pip(t, ) (i )} 0, (13)
ueUy i€S

Given V(T',n) = sup, ¢y (T, n,u) where ¢(T,n,u) =, g ¢:s P (7).



Suppose also that there exists for each n € Ny a measurable Ry—wvalued function u*(t,n) such
that u*(t,n) €U, te€0,T], and

u*(t,n) = argnl}ax {%(t,n,u) V(t,n) = V(t,n—1) —k(t,n,u)] + Z,uigb(t,n, u)(z)} , (14)
u€eUs i€S

Then uj defined by uj(w) = u*(t, Ny(w)) for w € F}N is an optimal solution.
4 NUMERICAL RESULTS

To obtain an optimal control solution for the deteriorating model presented above, a simple linear tran-
sition rate is assumed, ¢;(t) = ¢ and the repair cost is a function of the state probability and control
action, k(t,n,u) = K — C¢(t,n,u)(1) (0 < C < K). It means with raising the impairment level of the
system, the repair cost decreases. The failure trend of is assumed to be linear ¢)(x) = x and the baseline

tafl
function is Weibull with intensity function A\ (t) = a Fa t > 0. The ordinary differential equation [13]

is solved using the Euler method with step size h = 0.1 together with equation [9]. The optimal control
process and the optimal control intensity with parameters g =2, o =1, o =2, \1 =1, k=2,¢c=1,
$1 =1, ¢ =2, @ =2 and = /2 are shown in Figures [1] and [2]).
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Figure 1: An evolution of the optimal control process Figure 2: An evolution of the optimal intensity con-
u; over [0,15] trol given uj
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