A Semi-Parametric Approach To Maintenance Optimization

Reza Ahmadi

Martin Newby

School of Engineering and Mathematical Sciences City University of London LONDON United Kingdom $re_ahmadi_stat@yahoo.com$

Abstract

We consider a deteriorating system subject to repair given partial information. The evolution of the system is described by a non-homogeneous Markov process. Between replacements the intensity of occurrence of minimal repairs is modulated by a measurable deterministic control function. The revenue depends on the system state and the costs depend on the level of control. Given the control value the revenue over a finite horizon is obtained. The expected revenue is maximized by choosing an optimal control strategy using a deterministic Hamilton-Jacobi equation.

1 INTRODUCTION

We optimize the revenue from a system subject to repair and maintenance. The system is subject to stochastic deterioration when working and can be in one of two unobservable states. The observed history of the process \mathcal{F}_t^N is characterized by the counting process N_t of minimal repair points. Using the approach of Jensen (?), the intensity of minimal repairs is described by a stochastic measure which depends on the system state X_t . The flow of the process consists of a mixture of stochastic motions resulting from the natural motion of the process which are controlled by a non-homogeneous Markov process and the random jumps of the \mathcal{F}_t^N -adapted control process u_t , $t \in R_+$. To model the effect of covariate values, we consider the proportional intensity model (PIM) which is a generalized case of the proportional hazard model introduced by (?). By using the Filtering theorem (?) an explicit solution to the estimation of the system state with respect to \mathcal{F}_t^N is derived. This solution transforms the control problem above into an intensity control model adapted to the observable history. By using a deterministic Hamilton-Jacobi Equation, in a Markovian manner, an optimal control process with respect to the counting process of minimal repairs is obtained.

2 MODELLING (PSP)

The evolution of the process and the effect of the environmental factors on the system are incorporated in the system state process $(X_t), t \in \mathbb{R}^+$ with state space $S = \{1, 2, ..., m\}$ whose transition between states is controlled by the non-homogeneous Markov process with time dependent transition probabilities and intensities matrix $P(t) = (p_{ij}(t))$ and $Q(t) = (q_{ij}(t))$. The occurrence of minimal repairs is described by the counting process $(N_t), t \in \mathcal{R}^+, N_t = \sum_{n \geq 1} I_{\{T_n \leq t\}}$ defined on a measurable space (Ω, \mathcal{F}) where $T_1 < T_2 < ... < T_n < ...$ is the sequence of repair time points. It is assumed that the intensity of occurrence of repairs is a stochastic measure λ_{X_t} with smooth semi-martingale representation (SSM):

$$N_t = \int_0^t \lambda_{X_s} ds + M_t, \quad t \in \mathcal{R}_+, M \in \mathcal{M}_0$$
 (1)

Where $0 < \lambda_i < \infty, i \in S$, $\lambda_{X_t}, t \in \mathcal{R}^+$ is \mathcal{F} progressive, \mathcal{M}_0 refers to the class of \mathcal{F} -martingales with paths which are right-continuous and left-limited (with $M_0 = 0$). The function $\varphi_t(i) = I_{\{X_t = i\}}$ is the indicator process of the system state. We assume that the minimal repair process is stopped by an \mathcal{F}_t -adapted failure time. If the lifetime of the system is measured by the \mathcal{F}_t -stopping time ξ , then $N = (N_t)$ is transformed to the process $N_t^{\xi} = (N_{t \wedge \xi})$ limited to the stopping time ξ . The process N_t^{ξ} again admits

following \mathcal{F}_t -SSM representations:

$$N_t^{\xi} = \int_0^t I(\xi > s) \lambda_{X_s} ds + M_t^{\xi} = \int_0^t \sum_{i \in S} \lambda_i I(X_t = i, \xi > t) + M_t^{\xi}$$
 (2)

where M_t^{ξ} is an \mathcal{F}_t -stopped martingale. The indicator process $Z_t = I(\xi \leq t)$ describes the evolution of the system lifetime and $\lambda_t^{\xi} = \lambda_{X_t} I(\xi > t)$ can be realized as the \mathcal{F}_t -intensity of N_t randomized by the random failure time ξ . To model the lifetime of the process we assume that Z_t admits a smooth \mathcal{F} -semimartingale representation with an \mathcal{F} -martingale $M \in \mathcal{M}_0$ such that its regression part is the \mathcal{F}_t -adapted Cox process $\gamma_t \equiv \gamma(t, X_t)$ where $\gamma(t, X_t) = \lambda_0(t)\psi(X_t)$, $t \in \mathbb{R}^+$ where both the baseline intensity $\lambda_0(t)$ and $\psi(x)$ are bounded and non-decreasing. In terms of the above measures the SSM representation of (Z_t) is given by

$$I(\xi \le t) = \int_0^t I(\xi > s) \gamma_s ds + M_t^{\gamma}, \quad t \in \mathbb{R}^+$$
 (3)

where $(\gamma_t), t \in \mathcal{R}^+$ is a progressively measurable with respect to the filtration \mathcal{F}_t with $E \int_0^t |\gamma_s| ds < \infty$ for all $t \in \mathcal{R}^+$ and $M^{\gamma} = (M_t^{\gamma}) \in \mathcal{M}_0$.

We solve the intensity control with partial information using the projected version of the indicator process $(\varphi_t), t \in \mathcal{R}^+$ given the sub-filtration $\mathcal{F}^N_t = \sigma\{N_s : 0 < s \leq t\}$, that is, $\hat{\varphi}_t(i) = E(\varphi_t(i)|\mathcal{F}^N_t)$ for $i \in S$. We use the smooth semi-martingale representation of $I(\xi \leq t)$ with respect to the sub-filtration \mathcal{F}^N to change the information level and the state we use the projection theorem (?). For $T_{N_t} \leq t < T_{N_{t+1}}$ the projection formula yields the \mathcal{F}^N_t -SSM representation:

$$\bar{R}(N_t, t - T_{N_t}) = \int_0^t \sum_{i \in S} \gamma(s, i) \hat{\varphi}_s(i) R(N_s, s - T_{N_s}) ds + \bar{M}_t^{\gamma}, \tag{4}$$

where $R(N_t, t - T_{N_t}) = 1 - \bar{R}(N_t, t - T_{N_t})$ is the \mathcal{F}_t^N -adapted conditional survival probability, $R(N_t, t - T_{N_t}) = E\left(I(\xi \ge t)|\mathcal{F}_t^N\right)$, and $\hat{\gamma}_t(N) = \sum_{i \in S} \hat{\gamma}(t, i)\hat{\varphi}_t(i)R(N_t, t - T_{N_t})$ is \mathcal{F}_t^N -progressively measurable with $\hat{\gamma}_t(N) = E(I(\xi > t)\gamma_t|\mathcal{F}_t^N)$. Since $R(N_t, t - T_{N_t})$ has continuous paths of bounded variation the martingale term \bar{M}_t^{γ} is identically zero, the solution of the reduced integral equation [4] is

$$R(N_t, t - T_{N_t}) = \exp\left(-\int_0^{(t - T_{N_t})} \sum_{i \in S} \gamma(s, i) \hat{\varphi}_s(i) ds\right) = \prod_{i \in S} R(N_t, i, s - T_{N_t})$$
 (5)

where $R(N_t, i, s - T_{N_t}) = \exp\left(-\int_0^{(t-T_{N_t})} \gamma(s, i)\hat{\varphi}_s(i)ds\right)$. We focus on modelling the inter-arrival times distribution of minimal repairs. We use an alternative definition of a doubly stochastic poisson process (?). The intensity term $\hat{\lambda}_t^{\xi}(N)$ in terms of $R(N_t, i, t - T_{N_t})$ can be written

$$\hat{\lambda}_t^{\xi}(N) = E(\lambda_t^{\xi} | \mathcal{F}_t^N) = \left(\sum_{i \in S} \lambda_i \hat{\varphi}_t^N(i)\right) \left(\prod_{i \in S} R(N_t, i, s - T_{N_t})\right)$$
(6)

Where $\hat{\varphi}_t^N(i) = \hat{\varphi}_t(i)I\{T_{N_t} \leq t < T_{N_t+1}\}$. Now, for each $n \in \mathbb{N}_0$ let $\bar{F}_n(v)$ be the regular conditional distribution of the inter-arrival times $V_{n+1} = T_{(n+1)} - T_n$, $T_0 = 0$ given \mathcal{F}_t^N -adapted measure $\hat{\lambda}_t^{\xi}(n)$. Then,

$$\bar{F}_n(v) = p(V_{n+1} \ge v | \hat{\lambda}_t^{\xi}(n)) = \exp\left(-\int_{T_n}^{T_n+v} \sum_{i \in S} \lambda_i R(n, i, t - T_n) \hat{\varphi}_t^n(i) dt\right)$$
(7)

Where $T_n \le t < T_{n+1}$ for n = 0, 1, 2, ...

If η_{n+1} denotes the expected value of $(n+1)^{\text{th}}$ inter-arrival minimal repair time then by using the equation [7] we have

$$\eta_{n+1} = \int_0^\infty \bar{F}_n(v)dv = \int_0^\infty \exp\left(-\int_{T_n}^{T_n+v} \sum_{i \in S} \lambda_i R(n,i,t) \hat{\varphi}_t^n(i)dt\right) dv \tag{8}$$

Since the integrand term of equation (8)depends on T_n , η_{n+1} is a random measure. To deal with this we restrict ourselves to an estimated version of η_{n+1} . We use μ_{n+1} the $(n+1)^{\text{th}}$ expected value of repair times $\mu_{n+1} = E(T_{n+1}) = \sum_{k=1}^{n+1} \hat{\eta}_{n+1}$

$$\hat{\eta}_{n+1} = \int_0^\infty \hat{\bar{F}}_n(v) dv = \int_0^\infty \exp\left(-\int_{\mu_n}^{\mu_n+v} \sum_{i \in S} \lambda_i R(n, i, t) \hat{\varphi}_t^n(i) dt\right) dv \quad \text{for } n > 0.$$
 (9)

We close this section by stating an explicit solution for the probability of the system state $\hat{\varphi}_t(i), i \in S$ adapted to the partial information \mathcal{F}_t^N . The filtering theorem gives an explicit solution

$$\hat{\varphi}_{t}(j) = \hat{\varphi}_{0}(j) + \int_{0}^{t} \left(\sum_{i \in S} \hat{\varphi}_{s}(i) \left\{ q_{ij}(s) + \hat{\varphi}_{s}(j)(\lambda_{i} - \lambda_{j}) \right\} \right) ds + \sum_{n \ge 1} \left(-\hat{\varphi}_{T_{n}^{-}}(j) + \frac{\lambda_{j} \hat{\varphi}_{T_{n}^{-}}(j)}{\sum_{i=1}^{m} \lambda_{i} \hat{\varphi}_{T_{n}^{-}}(i)} I_{\{T_{n} \ge t\}} \right), \tag{10}$$

where $\hat{\varphi}_{t^-}(j)$ refers to the left limit.

3 MODELLING INTENSITY CONTROL

We assume that the intensity is controlled by a control function u and yields a revenue $\mu_{X_t}^u$ which depends on the system state and is subject to a cost $k_t(u)$ which depends on the control level. To set up the PSP model modulated by the control measure and to optimize the maintenance process, assume that \mathcal{U} is the set of \mathbb{R}^+ -valued measurable control processes of the form $u_t = u(t, N_t(\omega))$ where for each $n \in N^+$, u(t, n) is \mathcal{F}_t^N -predictable and $u_t \in \mathcal{U}$, $t \geq 0$, $\omega \in \Omega$ To each control $u \in \mathcal{U}$ we associate a probability measure (control dynamics) P_u , $u \in \mathcal{U}$ on (Ω, \mathcal{F}) . It is assumed that N_t through transition rate $q_1(t)$ admits a (P_u, \mathcal{F}_t^N) -intensity $\lambda_t^{\xi}(u)$ of the form $\lambda_t^{\xi}(\omega, u) = \lambda(t, N_t(\omega), u_t(\omega))$, so that $q_1^u(t) = q_1(t, u)$. Thus, $q_1^u(t)$ can be regarded as a key tool to turn the maintenance template into the intensity control model. In addition, to each $u \in \mathcal{U}$ we associate a nonnegative measure J(u):

$$J(u) = E_u \left[\int_0^T \left(\mu_{X_t}^u - k(t, N_t, u) \lambda_t^{\xi}(u) \right) dt - \phi_{X_T}^u \right]$$

$$\tag{11}$$

T is a positive time, $\mu_{X_t}^u$ is a nonnegative \mathcal{F}_t^N -progressive process and $k_{T_n}(u)$, $\phi_{X_T}^u$ are nonnegative \mathcal{F}_t^N predictable, and \mathcal{F}_T -measurable random variable respectively. The measure J(u) associated to u is the value function, $\mu_{X_t}^u$, indexed by the system state is the reward per unit of time such that $(\mu_2 < \mu_1)$. This means raising the wear level of the system decreases the revenue obtained over inter-arrival time. The minimal repair cost at the n-th repair is $k_{T_n}(u)$ and cost of maintenance at the action time and $\phi_{X_T}^u$ is the final cost of replacement and inspection at terminal time T. By projection on the observed history of the process the \mathcal{F}_t^N -adapted version of $\hat{J}(u)$ is

$$\hat{J}(u) = E_u \left[\int_0^T \left(\sum_{i \in S} \mu_i \hat{\varphi}_t^u(i) - k(t, N_t, u) \sum_{i \in S} \lambda_i \hat{\varphi}_t^u(i) R(t, i, t - T_{N_t}) dt - \sum_{i \in S} \phi_i^u \hat{\varphi}_T(i) \right) \right]$$
(12)

As seen, the intensity control problem is subject to $Markovian\ Controls$. More precisely, $J(u)(\forall u \in \mathcal{U})$ is characterized just with respect to \mathcal{F}_t^N -adapted measure $\hat{\varphi}_t$, or equivalently N_t . Following we restrict ourselves to solving the optimal control problem over finite horizon in a $Markovian\ Control$ manner. To achieve this aim which is to select an optimum strategy $\{u_t^* \equiv u_t^*(t,n) : u_t^* \in \mathcal{U}\}$ so that $\hat{J}(u^*) = \sup_{u \in \mathcal{U}} \hat{J}(u)$ the "deterministic Hamilton-Jacobi Equation" (?) is employed.

Corollary 1. Let for the measures $\hat{\lambda}^{\xi}(t, n, u)$, $\hat{\varphi}^{u}_{t}(i) = \hat{\varphi}(t, n, u)(i)$, and k(t, n, u) where are independent of ω there exists for each $n \in N_{+}$ a function V(t, n) such that

$$\frac{\partial V(t,n)}{\partial t} + \sup_{u \in U_t} \left\{ \hat{\lambda}^{\xi}(t,n,u) \left[V(t,n) - V(t,n-1) - k(t,n,u) \right] + \sum_{i \in S} \mu_i \hat{\varphi}(t,n,u)(i) \right\} = 0, \quad (13)$$

Given $V(T,n) = \sup_{u \in \mathcal{U}} \phi(T,n,u)$ where $\phi(T,n,u) = \sum_{i \in S} \phi_i \hat{\varphi}_T^u(i)$.

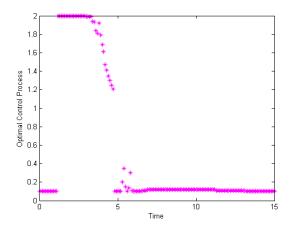
Suppose also that there exists for each $n \in N_+$ a measurable R_+ -valued function $u^*(t,n)$ such that $u^*(t,n) \in \mathcal{U}, \quad t \in [0,T],$ and

$$u^{*}(t,n) = \underset{u \in U_{t}}{\operatorname{argmax}} \left\{ \hat{\lambda}^{\xi}(t,n,u) \left[V(t,n) - V(t,n-1) - k(t,n,u) \right] + \sum_{i \in S} \mu_{i} \hat{\varphi}(t,n,u)(i) \right\},$$
(14)

Then u_t^* defined by $u_t^*(\omega) = u^*(t, N_t(\omega))$ for $\omega \in F_t^N$ is an optimal solution.

4 NUMERICAL RESULTS

To obtain an optimal control solution for the deteriorating model presented above, a simple linear transition rate is assumed, $q_1(t) = t$ and the repair cost is a function of the state probability and control action, $k(t, n, u) = K - C\hat{\varphi}(t, n, u)(1)$ (0 < C < K). It means with raising the impairment level of the system, the repair cost decreases. The failure trend of is assumed to be linear $\psi(x) = x$ and the baseline function is Weibull with intensity function $\lambda_0(t) = \frac{\alpha t^{\alpha-1}}{\beta^{\alpha}}$, $t \ge 0$. The ordinary differential equation [13] is solved using the Euler method with step size h = 0.1 together with equation [9]. The optimal control process and the optimal control intensity with parameters $\mu_1 = 2$, $\mu_2 = 1$, $\lambda_2 = 2$, $\lambda_1 = 1$, k = 2, c = 1, $\phi_1 = 1$, $\phi_2 = 2$, $\alpha = 2$ and $\beta = \sqrt{2}$ are shown in Figures [1] and [2]).



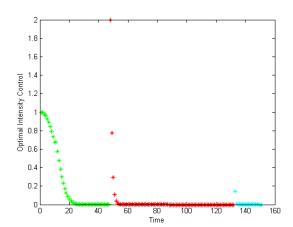


Figure 1: An evolution of the optimal control process u_t^* over [0,15]

Figure 2: An evolution of the optimal intensity control given u_t^*

References