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Abstract

We consider a deteriorating system subject to repair given partial information. The evolution
of the system is described by a non-homogeneous Markov process. Between replacements
the intensity of occurrence of minimal repairs is modulated by a measurable deterministic
control function. The revenue depends on the system state and the costs depend on the
level of control. Given the control value the revenue over a finite horizon is obtained.The
expected revenue is maximized by choosing an optimal control strategy using a deterministic
Hamilton-Jacobi equation.

1 INTRODUCTION

We optimize the revenue from a system subject to repair and maintenance. The system is subject to
stochastic deterioration when working and can be in one of two unobservable states. The observed
history of the process FNt is characterized by the counting process Nt of minimal repair points. Using
the approach of Jensen (?), the intensity of minimal repairs is described by a stochastic measure which
depends on the system state Xt. The flow of the process consists of a mixture of stochastic motions
resulting from the natural motion of the process which are controlled by a non-homogeneous Markov
process and the random jumps of the FNt -adapted control process ut, t ∈ R+. To model the effect
of covariate values, we consider the proportional intensity model (PIM) which is a generalized case
of the proportional hazard model introduced by (?). By using the Filtering theorem (?) an explicit
solution to the estimation of the system state with respect to FNt is derived. This solution transforms
the control problem above into an intensity control model adapted to the observable history. By using a
deterministic Hamilton-Jacobi Equation, in a Markovian manner, an optimal control process with respect
to the counting process of minimal repairs is obtained.

2 MODELLING (PSP)

The evolution of the process and the effect of the environmental factors on the system are incorporated in
the system state process (Xt), t ∈ R+ with state space S = {1, 2, ...,m} whose transition between states
is controlled by the non-homogeneous Markov process with time dependent transition probabilities and
intensities matrix P (t) = (pij(t)) and Q(t) = (qij(t)). The occurrence of minimal repairs is described
by the counting process (Nt), t ∈ R+, Nt =

∑
n≥1 I{Tn≤t} defined on a measurable space (Ω,F) where

T1 < T2 < ... < Tn < . . . is the sequence of repair time points. It is assumed that the intensity of
occurrence of repairs is a stochastic measure λXt

with smooth semi-martingale representation (SSM):

Nt =
∫ t

0

λXs
ds+Mt, t ∈ R+,M ∈M0 (1)

Where 0 < λi < ∞, i ∈ S, λXt , t ∈ R+ is F progressive, M0 refers to the class of F-martingales with
paths which are right-continuous and left-limited (with M0 = 0). The function ϕt(i) = I{Xt=i} is the
indicator process of the system state. We assume that the minimal repair process is stopped by an Ft-
adapted failure time. If the lifetime of the system is measured by the Ft-stopping time ξ, then N = (Nt)
is transformed to the process Nξ = (Nt∧ξ) limited to the stopping time ξ. The process Nξ

t again admits



following Ft-SSM representations:

Nξ
t =

∫ t

0

I(ξ > s)λXsds+Mξ
t =

∫ t

0

∑
i∈S

λiI(Xt = i, ξ > t) +Mξ
t (2)

where Mξ
t is an Ft-stopped martingale. The indicator process Zt = I(ξ ≤ t) describes the evolution of the

system lifetime and λξt = λXtI(ξ > t) can be realized as the Ft-intensity of Nt randomized by the random
failure time ξ. To model the lifetime of the process we assume that Zt admits a smooth F-semimartingale
representation with an F-martingale M ∈M0 such that its regression part is the Ft-adapted Cox process
γt ≡ γ(t,Xt) where γ(t,Xt) = λ0(t)ψ(Xt), t ∈ R+ where both the baseline intensity λ0(t) and ψ(x) are
bounded and non-decreasing. In terms of the above measures the SSM representation of (Zt) is given by

I(ξ ≤ t) =
∫ t

0

I(ξ > s)γsds+Mγ
t , t ∈ R+ (3)

where (γt), t ∈ R+ is a progressively measurable with respect to the filtration Ft with E
∫ t
0
|γs|ds < ∞

for all t ∈ R+ and Mγ = (Mγ
t ) ∈M0.

We solve the intensity control with partial information using the projected version of the indicator
process (ϕt), t ∈ R+ given the sub-filtration FNt = σ {Ns : 0 < s ≤ t} , that is, ϕ̂t(i) = E(ϕt(i)|FNt ) for
i ∈ S. We use the smooth semi-martingale representation of I(ξ ≤ t) with respect to the sub-filtration
FN to change the information level and the state we use the projection theorem (?). For TNt

≤ t < TNt+1

the projection formula yields the FNt -SSM representation:

R̄(Nt, t− TNt
) =

∫ t

0

∑
i∈S

γ(s, i)ϕ̂s(i)R(Ns, s− TNs
)ds+ M̄γ

t , (4)

where R(Nt, t − TNt
) = 1 − R̄(Nt, t − TNt

) is the FNt -adapted conditional survival probability,
R(Nt, t− TNt

) = E
(
I(ξ ≥ t)|FNt

)
, and γ̂t(N) =

∑
i∈S γ̂(t, i)ϕ̂t(i)R(Nt, t−TNt

) is FNt -progressively mea-
surable with γ̂t(N) = E(I(ξ > t)γt|FNt ). Since R(Nt, t−TNt

) has continuous paths of bounded variation
the martingale term M̄γ

t is identically zero, the solution of the reduced integral equation [4] is

R(Nt, t− TNt) = exp

(
−
∫ (t−TNt )

0

∑
i∈S

γ(s, i)ϕ̂s(i)ds

)
=
∏
i∈S

R(Nt, i, s− TNt) (5)

where R(Nt, i, s− TNt) = exp
(
−
∫ (t−TNt )

0
γ(s, i)ϕ̂s(i)ds

)
. We focus on modelling the inter-arrival times

distribution of minimal repairs. We use an alternative definition of a doubly stochastic poisson process
(?). The intensity term λ̂ξt (N) in terms of R(Nt, i, t− TNt) can be written

λ̂ξt (N) = E(λξt |FNt ) =

(∑
i∈S

λiϕ̂
N
t (i)

)(∏
i∈S

R(Nt, i, s− TNt)

)
(6)

Where ϕ̂Nt (i) = ϕ̂t(i)I {TNt ≤ t < TNt+1}. Now, for each n ∈ N0 let F̄n(v) be the regular conditional
distribution of the inter-arrival times Vn+1 = T(n+1) − Tn, T0 = 0 given FNt -adapted measure λ̂ξt (n).
Then,

F̄n(v) = p(Vn+1 ≥ v|λ̂ξt (n)) = exp

(
−
∫ Tn+v

Tn

∑
i∈S

λiR(n, i, t− Tn)ϕ̂nt (i)dt

)
(7)

Where Tn ≤ t < Tn+1 for n = 0, 1, 2, ....
If ηn+1 denotes the expected value of (n + 1)th inter-arrival minimal repair time then by using the

equation [7] we have

ηn+1 =
∫ ∞

0

F̄n(v)dv =
∫ ∞

0

exp

(
−
∫ Tn+v

Tn

∑
i∈S

λiR(n, i, t)ϕ̂nt (i)dt

)
dv (8)



Since the integrand term of equation (8)depends on Tn, ηn+1 is a random measure. To deal with this we
restrict ourselves to an estimated version of ηn+1. We use µn+1 the (n + 1)th expected value of repair
times µn+1 = E(Tn+1) =

∑n+1
k=1 η̂n+1

η̂n+1 =
∫ ∞

0

ˆ̄Fn(v)dv =
∫ ∞

0

exp

(
−
∫ µn+v

µn

∑
i∈S

λiR(n, i, t)ϕ̂nt (i)dt

)
dv for n > 0 . (9)

We close this section by stating an explicit solution for the probability of the system state ϕ̂t(i), i ∈ S
adapted to the partial information FNt . The filtering theorem gives an explicit solution

ϕ̂t(j) = ϕ̂0(j)+
∫ t

0

(∑
i∈S

ϕ̂s(i) {qij(s) + ϕ̂s(j)(λi − λj)}

)
ds+

∑
n≥1

(
−ϕ̂T−n (j) +

λjϕ̂T−n (j)∑m
i=1 λiϕ̂T−n (i)

I{Tn≥t}

)
,

(10)
where ϕ̂t−(j) refers to the left limit.

3 MODELLING INTENSITY CONTROL

We assume that the intensity is controlled by a control function u and yields a revenue µuXt
which depends

on the system state and is subject to a cost kt(u) which depends on the control level. To set up the PSP
model modulated by the control measure and to optimize the maintenance process, assume that U is the
set of R+-valued measurable control processes of the form ut = u(t,Nt(ω)) where for each n ∈ N+, u(t, n)
is FNt -predictable and ut ∈ U , t ≥ 0, ω ∈ Ω To each control u ∈ U we associate a probability measure
(control dynamics) Pu, u ∈ U on (Ω,F). It is assumed that Nt through transition rate q1(t) admits a
(Pu,FNt )-intensity λξt (u) of the form λξt (ω, u) = λ(t,Nt(ω), ut(ω)), so that qu1 (t) = q1(t, u). Thus, qu1 (t)
can be regarded as a key tool to turn the maintenance template into the intensity control model. In
addition, to each u ∈ U we associate a nonnegative measure J(u):

J(u) = Eu

[∫ T

0

(
µuXt
− k(t,Nt, u)λξt (u)

)
dt− φuXT

]
(11)

T is a positive time, µuXt
is a nonnegative FNt -progressive process and kTn

(u), φuXT
are nonnegative FNt

predictable, and FT -measurable random variable respectively. The measure J(u) associated to u is the
value function, µuXt

, indexed by the system state is the reward per unit of time such that (µ2 < µ1). This
means raising the wear level of the system decreases the revenue obtained over inter-arrival time. The
minimal repair cost at the n-th repair is kTn(u) and cost of maintenance at the action time and φuXT

is
the final cost of replacement and inspection at terminal time T . By projection on the observed history
of the process the FNt -adapted version of Ĵ(u) is

Ĵ(u) = Eu

[∫ T

0

(∑
i∈S

µiϕ̂
u
t (i)− k(t,Nt, u)

∑
i∈S

λiϕ̂
u
t (i)R(t, i, t− TNt

)dt−
∑
i∈S

φui ϕ̂T (i)

)]
(12)

As seen, the intensity control problem is subject to Markovian Controls. More precisely, J(u)(∀u ∈ U)
is characterized just with respect to FNt -adapted measure ϕ̂t, or equivalently Nt. Following we re-
strict ourselves to solving the optimal control problem over finite horizon in a Markovian Control
manner. To achieve this aim which is to select an optimum strategy {u∗t ≡ u∗t (t, n) : u∗t ∈ U} so that
Ĵ(u∗) = supu∈U Ĵ(u) the “deterministic Hamilton-Jacobi Equation” (?) is employed.

Corollary 1. Let for the measures λ̂ξ(t, n, u), ϕ̂ut (i) = ϕ̂(t, n, u)(i), and k(t, n, u) where are independent
of ω there exists for each n ∈ N+ a function V (t, n) such that

∂V (t, n)
∂t

+ sup
u∈Ut

{
λ̂ξ(t, n, u) [V (t, n)− V (t, n− 1)− k(t, n, u)] +

∑
i∈S

µiϕ̂(t, n, u)(i)

}
= 0, (13)

Given V (T, n) = supu∈U φ(T, n, u) where φ(T, n, u) =
∑
i∈S φiϕ̂

u
T (i).



Suppose also that there exists for each n ∈ N+ a measurable R+−valued function u∗(t, n) such
that u∗(t, n) ∈ U , t ∈ [0, T ], and

u∗(t, n) = argmax
u∈Ut

{
λ̂ξ(t, n, u) [V (t, n)− V (t, n− 1)− k(t, n, u)] +

∑
i∈S

µiϕ̂(t, n, u)(i)

}
, (14)

Then u∗t defined by u∗t (ω) = u∗(t,Nt(ω)) for ω ∈ FNt is an optimal solution.

4 NUMERICAL RESULTS

To obtain an optimal control solution for the deteriorating model presented above, a simple linear tran-
sition rate is assumed, q1(t) = t and the repair cost is a function of the state probability and control
action, k(t, n, u) = K − Cϕ̂(t, n, u)(1) (0 < C < K). It means with raising the impairment level of the
system, the repair cost decreases. The failure trend of is assumed to be linear ψ(x) = x and the baseline

function is Weibull with intensity function λ0(t) =
αtα−1

βα
, t ≥ 0. The ordinary differential equation [13]

is solved using the Euler method with step size h = 0.1 together with equation [9]. The optimal control
process and the optimal control intensity with parameters µ1 = 2, µ2 = 1, λ2 = 2, λ1 = 1, k = 2, c = 1,
φ1 = 1, φ2 = 2, α = 2 and β =

√
2 are shown in Figures [1] and [2]).

Figure 1: An evolution of the optimal control process
u∗t over [0,15]

Figure 2: An evolution of the optimal intensity con-
trol given u∗t
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