# A Semi-Parametric Approach To Maintenance Optimization

Reza Ahmadi

Martin Newby

School of Engineering and Mathematical Sciences City University of London LONDON United Kingdom  $re\_ahmadi\_stat@yahoo.com$ 

### Abstract

We consider a deteriorating system subject to repair given partial information. The evolution of the system is described by a non-homogeneous Markov process. Between replacements the intensity of occurrence of minimal repairs is modulated by a measurable deterministic control function. The revenue depends on the system state and the costs depend on the level of control. Given the control value the revenue over a finite horizon is obtained. The expected revenue is maximized by choosing an optimal control strategy using a deterministic Hamilton-Jacobi equation.

### 1 INTRODUCTION

We optimize the revenue from a system subject to repair and maintenance. The system is subject to stochastic deterioration when working and can be in one of two unobservable states. The observed history of the process  $\mathcal{F}_t^N$  is characterized by the counting process  $N_t$  of minimal repair points. Using the approach of Jensen (?), the intensity of minimal repairs is described by a stochastic measure which depends on the system state  $X_t$ . The flow of the process consists of a mixture of stochastic motions resulting from the natural motion of the process which are controlled by a non-homogeneous Markov process and the random jumps of the  $\mathcal{F}_t^N$ -adapted control process  $u_t$ ,  $t \in R_+$ . To model the effect of covariate values, we consider the proportional intensity model (PIM) which is a generalized case of the proportional hazard model introduced by (?). By using the Filtering theorem (?) an explicit solution to the estimation of the system state with respect to  $\mathcal{F}_t^N$  is derived. This solution transforms the control problem above into an intensity control model adapted to the observable history. By using a deterministic Hamilton-Jacobi Equation, in a Markovian manner, an optimal control process with respect to the counting process of minimal repairs is obtained.

# 2 MODELLING (PSP)

The evolution of the process and the effect of the environmental factors on the system are incorporated in the system state process  $(X_t), t \in \mathbb{R}^+$  with state space  $S = \{1, 2, ..., m\}$  whose transition between states is controlled by the non-homogeneous Markov process with time dependent transition probabilities and intensities matrix  $P(t) = (p_{ij}(t))$  and  $Q(t) = (q_{ij}(t))$ . The occurrence of minimal repairs is described by the counting process  $(N_t), t \in \mathcal{R}^+, N_t = \sum_{n \geq 1} I_{\{T_n \leq t\}}$  defined on a measurable space  $(\Omega, \mathcal{F})$  where  $T_1 < T_2 < ... < T_n < ...$  is the sequence of repair time points. It is assumed that the intensity of occurrence of repairs is a stochastic measure  $\lambda_{X_t}$  with smooth semi-martingale representation (SSM):

$$N_t = \int_0^t \lambda_{X_s} ds + M_t, \quad t \in \mathcal{R}_+, M \in \mathcal{M}_0$$
 (1)

Where  $0 < \lambda_i < \infty, i \in S$ ,  $\lambda_{X_t}, t \in \mathcal{R}^+$  is  $\mathcal{F}$  progressive,  $\mathcal{M}_0$  refers to the class of  $\mathcal{F}$ -martingales with paths which are right-continuous and left-limited (with  $M_0 = 0$ ). The function  $\varphi_t(i) = I_{\{X_t = i\}}$  is the indicator process of the system state. We assume that the minimal repair process is stopped by an  $\mathcal{F}_t$ -adapted failure time. If the lifetime of the system is measured by the  $\mathcal{F}_t$ -stopping time  $\xi$ , then  $N = (N_t)$  is transformed to the process  $N_t^{\xi} = (N_{t \wedge \xi})$  limited to the stopping time  $\xi$ . The process  $N_t^{\xi}$  again admits

following  $\mathcal{F}_t$ -SSM representations:

$$N_t^{\xi} = \int_0^t I(\xi > s) \lambda_{X_s} ds + M_t^{\xi} = \int_0^t \sum_{i \in S} \lambda_i I(X_t = i, \xi > t) + M_t^{\xi}$$
 (2)

where  $M_t^{\xi}$  is an  $\mathcal{F}_t$ -stopped martingale. The indicator process  $Z_t = I(\xi \leq t)$  describes the evolution of the system lifetime and  $\lambda_t^{\xi} = \lambda_{X_t} I(\xi > t)$  can be realized as the  $\mathcal{F}_t$ -intensity of  $N_t$  randomized by the random failure time  $\xi$ . To model the lifetime of the process we assume that  $Z_t$  admits a smooth  $\mathcal{F}$ -semimartingale representation with an  $\mathcal{F}$ -martingale  $M \in \mathcal{M}_0$  such that its regression part is the  $\mathcal{F}_t$ -adapted Cox process  $\gamma_t \equiv \gamma(t, X_t)$  where  $\gamma(t, X_t) = \lambda_0(t)\psi(X_t)$ ,  $t \in \mathbb{R}^+$  where both the baseline intensity  $\lambda_0(t)$  and  $\psi(x)$  are bounded and non-decreasing. In terms of the above measures the SSM representation of  $(Z_t)$  is given by

$$I(\xi \le t) = \int_0^t I(\xi > s) \gamma_s ds + M_t^{\gamma}, \quad t \in \mathbb{R}^+$$
 (3)

where  $(\gamma_t), t \in \mathcal{R}^+$  is a progressively measurable with respect to the filtration  $\mathcal{F}_t$  with  $E \int_0^t |\gamma_s| ds < \infty$  for all  $t \in \mathcal{R}^+$  and  $M^{\gamma} = (M_t^{\gamma}) \in \mathcal{M}_0$ .

We solve the intensity control with partial information using the projected version of the indicator process  $(\varphi_t), t \in \mathcal{R}^+$  given the sub-filtration  $\mathcal{F}^N_t = \sigma\{N_s : 0 < s \leq t\}$ , that is,  $\hat{\varphi}_t(i) = E(\varphi_t(i)|\mathcal{F}^N_t)$  for  $i \in S$ . We use the smooth semi-martingale representation of  $I(\xi \leq t)$  with respect to the sub-filtration  $\mathcal{F}^N$  to change the information level and the state we use the projection theorem (?). For  $T_{N_t} \leq t < T_{N_{t+1}}$  the projection formula yields the  $\mathcal{F}^N_t$ -SSM representation:

$$\bar{R}(N_t, t - T_{N_t}) = \int_0^t \sum_{i \in S} \gamma(s, i) \hat{\varphi}_s(i) R(N_s, s - T_{N_s}) ds + \bar{M}_t^{\gamma}, \tag{4}$$

where  $R(N_t, t - T_{N_t}) = 1 - \bar{R}(N_t, t - T_{N_t})$  is the  $\mathcal{F}_t^N$ -adapted conditional survival probability,  $R(N_t, t - T_{N_t}) = E\left(I(\xi \ge t)|\mathcal{F}_t^N\right)$ , and  $\hat{\gamma}_t(N) = \sum_{i \in S} \hat{\gamma}(t, i)\hat{\varphi}_t(i)R(N_t, t - T_{N_t})$  is  $\mathcal{F}_t^N$ -progressively measurable with  $\hat{\gamma}_t(N) = E(I(\xi > t)\gamma_t|\mathcal{F}_t^N)$ . Since  $R(N_t, t - T_{N_t})$  has continuous paths of bounded variation the martingale term  $\bar{M}_t^{\gamma}$  is identically zero, the solution of the reduced integral equation [4] is

$$R(N_t, t - T_{N_t}) = \exp\left(-\int_0^{(t - T_{N_t})} \sum_{i \in S} \gamma(s, i) \hat{\varphi}_s(i) ds\right) = \prod_{i \in S} R(N_t, i, s - T_{N_t})$$
 (5)

where  $R(N_t, i, s - T_{N_t}) = \exp\left(-\int_0^{(t-T_{N_t})} \gamma(s, i)\hat{\varphi}_s(i)ds\right)$ . We focus on modelling the inter-arrival times distribution of minimal repairs. We use an alternative definition of a doubly stochastic poisson process (?). The intensity term  $\hat{\lambda}_t^{\xi}(N)$  in terms of  $R(N_t, i, t - T_{N_t})$  can be written

$$\hat{\lambda}_t^{\xi}(N) = E(\lambda_t^{\xi} | \mathcal{F}_t^N) = \left(\sum_{i \in S} \lambda_i \hat{\varphi}_t^N(i)\right) \left(\prod_{i \in S} R(N_t, i, s - T_{N_t})\right)$$
(6)

Where  $\hat{\varphi}_t^N(i) = \hat{\varphi}_t(i)I\{T_{N_t} \leq t < T_{N_t+1}\}$ . Now, for each  $n \in \mathbb{N}_0$  let  $\bar{F}_n(v)$  be the regular conditional distribution of the inter-arrival times  $V_{n+1} = T_{(n+1)} - T_n$ ,  $T_0 = 0$  given  $\mathcal{F}_t^N$ -adapted measure  $\hat{\lambda}_t^{\xi}(n)$ . Then,

$$\bar{F}_n(v) = p(V_{n+1} \ge v | \hat{\lambda}_t^{\xi}(n)) = \exp\left(-\int_{T_n}^{T_n+v} \sum_{i \in S} \lambda_i R(n, i, t - T_n) \hat{\varphi}_t^n(i) dt\right)$$
(7)

Where  $T_n \le t < T_{n+1}$  for n = 0, 1, 2, ...

If  $\eta_{n+1}$  denotes the expected value of  $(n+1)^{\text{th}}$  inter-arrival minimal repair time then by using the equation [7] we have

$$\eta_{n+1} = \int_0^\infty \bar{F}_n(v)dv = \int_0^\infty \exp\left(-\int_{T_n}^{T_n+v} \sum_{i \in S} \lambda_i R(n,i,t) \hat{\varphi}_t^n(i)dt\right) dv \tag{8}$$

Since the integrand term of equation (8)depends on  $T_n$ ,  $\eta_{n+1}$  is a random measure. To deal with this we restrict ourselves to an estimated version of  $\eta_{n+1}$ . We use  $\mu_{n+1}$  the  $(n+1)^{\text{th}}$  expected value of repair times  $\mu_{n+1} = E(T_{n+1}) = \sum_{k=1}^{n+1} \hat{\eta}_{n+1}$ 

$$\hat{\eta}_{n+1} = \int_0^\infty \hat{\bar{F}}_n(v) dv = \int_0^\infty \exp\left(-\int_{\mu_n}^{\mu_n+v} \sum_{i \in S} \lambda_i R(n, i, t) \hat{\varphi}_t^n(i) dt\right) dv \quad \text{for } n > 0.$$
 (9)

We close this section by stating an explicit solution for the probability of the system state  $\hat{\varphi}_t(i), i \in S$  adapted to the partial information  $\mathcal{F}_t^N$ . The filtering theorem gives an explicit solution

$$\hat{\varphi}_{t}(j) = \hat{\varphi}_{0}(j) + \int_{0}^{t} \left( \sum_{i \in S} \hat{\varphi}_{s}(i) \left\{ q_{ij}(s) + \hat{\varphi}_{s}(j)(\lambda_{i} - \lambda_{j}) \right\} \right) ds + \sum_{n \ge 1} \left( -\hat{\varphi}_{T_{n}^{-}}(j) + \frac{\lambda_{j} \hat{\varphi}_{T_{n}^{-}}(j)}{\sum_{i=1}^{m} \lambda_{i} \hat{\varphi}_{T_{n}^{-}}(i)} I_{\{T_{n} \ge t\}} \right), \tag{10}$$

where  $\hat{\varphi}_{t^-}(j)$  refers to the left limit.

### 3 MODELLING INTENSITY CONTROL

We assume that the intensity is controlled by a control function u and yields a revenue  $\mu_{X_t}^u$  which depends on the system state and is subject to a cost  $k_t(u)$  which depends on the control level. To set up the PSP model modulated by the control measure and to optimize the maintenance process, assume that  $\mathcal{U}$  is the set of  $\mathbb{R}^+$ -valued measurable control processes of the form  $u_t = u(t, N_t(\omega))$  where for each  $n \in N^+$ , u(t, n) is  $\mathcal{F}_t^N$ -predictable and  $u_t \in \mathcal{U}$ ,  $t \geq 0$ ,  $\omega \in \Omega$  To each control  $u \in \mathcal{U}$  we associate a probability measure (control dynamics)  $P_u$ ,  $u \in \mathcal{U}$  on  $(\Omega, \mathcal{F})$ . It is assumed that  $N_t$  through transition rate  $q_1(t)$  admits a  $(P_u, \mathcal{F}_t^N)$ -intensity  $\lambda_t^{\xi}(u)$  of the form  $\lambda_t^{\xi}(\omega, u) = \lambda(t, N_t(\omega), u_t(\omega))$ , so that  $q_1^u(t) = q_1(t, u)$ . Thus,  $q_1^u(t)$  can be regarded as a key tool to turn the maintenance template into the intensity control model. In addition, to each  $u \in \mathcal{U}$  we associate a nonnegative measure J(u):

$$J(u) = E_u \left[ \int_0^T \left( \mu_{X_t}^u - k(t, N_t, u) \lambda_t^{\xi}(u) \right) dt - \phi_{X_T}^u \right]$$

$$\tag{11}$$

T is a positive time,  $\mu_{X_t}^u$  is a nonnegative  $\mathcal{F}_t^N$ -progressive process and  $k_{T_n}(u)$ ,  $\phi_{X_T}^u$  are nonnegative  $\mathcal{F}_t^N$  predictable, and  $\mathcal{F}_T$ -measurable random variable respectively. The measure J(u) associated to u is the value function,  $\mu_{X_t}^u$ , indexed by the system state is the reward per unit of time such that  $(\mu_2 < \mu_1)$ . This means raising the wear level of the system decreases the revenue obtained over inter-arrival time. The minimal repair cost at the n-th repair is  $k_{T_n}(u)$  and cost of maintenance at the action time and  $\phi_{X_T}^u$  is the final cost of replacement and inspection at terminal time T. By projection on the observed history of the process the  $\mathcal{F}_t^N$ -adapted version of  $\hat{J}(u)$  is

$$\hat{J}(u) = E_u \left[ \int_0^T \left( \sum_{i \in S} \mu_i \hat{\varphi}_t^u(i) - k(t, N_t, u) \sum_{i \in S} \lambda_i \hat{\varphi}_t^u(i) R(t, i, t - T_{N_t}) dt - \sum_{i \in S} \phi_i^u \hat{\varphi}_T(i) \right) \right]$$
(12)

As seen, the intensity control problem is subject to  $Markovian\ Controls$ . More precisely,  $J(u)(\forall u \in \mathcal{U})$  is characterized just with respect to  $\mathcal{F}_t^N$ -adapted measure  $\hat{\varphi}_t$ , or equivalently  $N_t$ . Following we restrict ourselves to solving the optimal control problem over finite horizon in a  $Markovian\ Control$  manner. To achieve this aim which is to select an optimum strategy  $\{u_t^* \equiv u_t^*(t,n) : u_t^* \in \mathcal{U}\}$  so that  $\hat{J}(u^*) = \sup_{u \in \mathcal{U}} \hat{J}(u)$  the "deterministic Hamilton-Jacobi Equation" (?) is employed.

Corollary 1. Let for the measures  $\hat{\lambda}^{\xi}(t, n, u)$ ,  $\hat{\varphi}^{u}_{t}(i) = \hat{\varphi}(t, n, u)(i)$ , and k(t, n, u) where are independent of  $\omega$  there exists for each  $n \in N_{+}$  a function V(t, n) such that

$$\frac{\partial V(t,n)}{\partial t} + \sup_{u \in U_t} \left\{ \hat{\lambda}^{\xi}(t,n,u) \left[ V(t,n) - V(t,n-1) - k(t,n,u) \right] + \sum_{i \in S} \mu_i \hat{\varphi}(t,n,u)(i) \right\} = 0, \quad (13)$$

Given  $V(T,n) = \sup_{u \in \mathcal{U}} \phi(T,n,u)$  where  $\phi(T,n,u) = \sum_{i \in S} \phi_i \hat{\varphi}_T^u(i)$ .

Suppose also that there exists for each  $n \in N_+$  a measurable  $R_+$ -valued function  $u^*(t,n)$  such that  $u^*(t,n) \in \mathcal{U}, \quad t \in [0,T],$  and

$$u^{*}(t,n) = \underset{u \in U_{t}}{\operatorname{argmax}} \left\{ \hat{\lambda}^{\xi}(t,n,u) \left[ V(t,n) - V(t,n-1) - k(t,n,u) \right] + \sum_{i \in S} \mu_{i} \hat{\varphi}(t,n,u)(i) \right\},$$
(14)

Then  $u_t^*$  defined by  $u_t^*(\omega) = u^*(t, N_t(\omega))$  for  $\omega \in F_t^N$  is an optimal solution.

### 4 NUMERICAL RESULTS

To obtain an optimal control solution for the deteriorating model presented above, a simple linear transition rate is assumed,  $q_1(t) = t$  and the repair cost is a function of the state probability and control action,  $k(t, n, u) = K - C\hat{\varphi}(t, n, u)(1)$  (0 < C < K). It means with raising the impairment level of the system, the repair cost decreases. The failure trend of is assumed to be linear  $\psi(x) = x$  and the baseline function is Weibull with intensity function  $\lambda_0(t) = \frac{\alpha t^{\alpha-1}}{\beta^{\alpha}}$ ,  $t \ge 0$ . The ordinary differential equation [13] is solved using the Euler method with step size h = 0.1 together with equation [9]. The optimal control process and the optimal control intensity with parameters  $\mu_1 = 2$ ,  $\mu_2 = 1$ ,  $\lambda_2 = 2$ ,  $\lambda_1 = 1$ , k = 2, c = 1,  $\phi_1 = 1$ ,  $\phi_2 = 2$ ,  $\alpha = 2$  and  $\beta = \sqrt{2}$  are shown in Figures [1] and [2]).





Figure 1: An evolution of the optimal control process  $u_t^*$  over [0,15]

Figure 2: An evolution of the optimal intensity control given  $u_t^*$ 

#### References