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Abstract

We present a stochastic model for studying aging-related processes in organisms using infor-
mation on age trajectories of physiological indices and mortality or morbidity data collected
in a longitudinal study and information on genetic markers available for a sub-sample of indi-
viduals from the study. The approach allows for studying several major concepts of aging in
their mutual connection, revealing respective mechanisms not directly measured in the data.
The model evaluates these characteristics for carriers of different alleles (or genotypes) to
explore genetic mechanisms of aging-related processes. The method substantially increases
the accuracy of parameter estimates compared to calculations that use information from a
genetic sub-sample alone. The approach can be applied to analyses of any similar type of
“incomplete” data, i.e., for any (discrete, time-independent) variable which is available only
for a sub-sample of individuals from the entire longitudinal dataset.

1 Introduction

It is a typical situation in longitudinal studies when information on covariates essential for analyses of
mortality or morbidity risks is missing for some sub-sample of individuals. This may happen due to budget
limitations or by the design of the study. For example, two-stage designs routinely used in epidemiology
collect a disease status for a large group of individuals at the first stage and information on covariates
thought to be related to the risk of the disease is collected at the second stage for smaller sub-samples
of individuals. Another typical example is information on genetic markers. These data usually cannot
be collected for all participants of the study because of several reasons: 1) some individuals initially
participating in the study dropped out of a population (deceased or lost to follow-up) by the time of
collection of genetic data; 2) budget limitations prohibit obtaining genetic information for the entire
sample; 3) some study participants refuse to provide samples for genetic analyses. Thus, participants of
a longitudinal study are divided into two sub-samples: the genetic sub-sample includes those for whom
genetic information was collected and the non-genetic sub-sample consists of those for whom genetic
information is not available.

Another typical situation with longitudinal data is that they contain limited information that can
be directly associated with mechanisms of aging-related changes in an organism, such as homeostatic
regulation, allostatic load, stress resistance, and so on. However, such mechanisms may be mediated
by age-trajectories of various physiological indices in an organism. Consequently, longitudinal measure-
ments of physiological indices available for participants of longitudinal studies of health and longevity
constitute a valuable source of information that can be used to reveal these mechanisms. Mathematical
modeling may be used to help reveal regularities in aging-related changes hidden in the age-dynamics
of physiological indices. Yashin et al. (2007) suggested the stochastic model that incorporates several
major concepts of aging known to date and that links individual trajectories of physiological indices
measured in longitudinal data and mortality/morbidity risks. The mortality/morbidity risk is assumed
to be a quadratic function of physiological indices capturing J- or U-shapes of the risks observed for many
indices in different studies.

The Yashin et al. (2007) model can be extended to investigate genetic mechanisms in the aging-related
changes. An important feature of this extended model is that it uses the entire potential of longitudinal
study performing a joint analysis of the genetic and non-genetic sub-samples. The essence of the model
is presented in the following section. Further details including simulation studies and discussion can be
found in Arbeev et al. (2009).



2 Mathematical model for joint analysis of genetic and non-genetic
sub-samples from longitudinal studies

Denote by G (P (G = 1) = p, P (G = 0) = 1 − p) a random variable characterizing the absence (G = 0)
or presence (G = 1) of a selected allele (or genotype) in the genome of an individual randomly selected
from a population. Let Z = (Zt)t≥t0 be a k-dimensional continuous stochastic process representing the
age-dynamics of a vector of physiological indices in an organism. The evolution of this process depends
on the presence (or absence) of a selected allele (genotype) in the genome. We assume that it is described
by the following stochastic differential equation (with coefficients depending on the random variable G):

dZt = a(G, t) (Zt − f1(G, t)) dt+B(G, t)dWt, Zt0 , (1)

where the conditional distribution of initial value Zt0 given G (p(Zt0 |G = g )) is normal with mean
m(g, t0) = mg,0 and variance γ(g, t0) = γg,0, g = 0, 1. Here W = (Wt)t≥t0 is a k-dimensional Wiener
process independent of Zt0 and G. It describes external disturbances affecting the dynamics of the
physiological indices represented by Z. The strength of disturbances is characterized by the matrix of
diffusion coefficients B(G, t). The vector-function f1(G, t) describes the age trajectory of physiological
indices which organisms are forced to follow by the process of allostatic adaptation and represents the
“mean allostatic state.” The mechanisms of allostatic adaptation may differ in groups of individuals
characterized by different values of G (i.e., in carriers and non-carriers of a selected allele or genotype).
The mechanism of decline in adaptive (or homeostatic) capacity in an aging organism is given by the
matrix a(G, t). The elements of this matrix represent the rate of adaptive response (the homeostatic
adaptation) of an organism to deviations of physiological indices Z from the trajectories “prescribed” by
the mean allostatic state f1(G, t). Aging-related changes in the homeostatic capacity of an organism are
captured by dependence of this matrix on age (t). Its dependence on G allows for analyses of possible
genetic mechanisms of adaptive capacity (in carriers and non-carriers of the respective allele or genotype).

Let the hazard (e.g., mortality or morbidity) rate depend on Z and G as follows:

µ(G, t, Zt) = µ0(G, t) + (Zt − f(G, t))∗Q(G, t) (Zt − f(G, t)) . (2)

Here the scalar function µ0(G, t) is the baseline hazard characterizing the hazard rate remaining when
all indices follow their optimal trajectories given by the vector-function f(G, t). This hazard rate is
associated with factors not captured by the quadratic term (i.e., unmeasured factors of genetic or non-
genetic origin). Its dependence on G assumes that the effect of unobserved factors on the hazard rate
may differ in carriers and non-carriers of the respective allele or genotype. The function f(G, t) defines
the “optimal” physiological state as the minimum of hazard at respective ages and may be referred to
as the age-specific physiological norm. Generally, it does not coincide with the function f1(G, t) because
the process of allostatic adaptation does not force the trajectories of Z to be at the optimum in terms
of the minimal hazard rate. The difference between these two functions is a measure of the allostatic
load. Dependence of f(G, t) on G modulates genetic effects of the respective allele or genotype on
age-trajectories of physiological norms. The non-negative-definite symmetric (for all values of G and
t) matrix Q(G, t) in the quadratic hazard term captures the aging-related decline in stress resistance.
Indeed, e.g., in a one-dimensional case, an increase of Q(G, t) with age means that the respective U-
shape of the quadratic term in the hazard rate narrows with age. Hence, the range of values of an index
corresponding to a moderate increase in the hazard rate (compared to the minimal level given by f(G, t))
narrows with age indicating the associated decline in stress resistance. Dependence of the matrix on G
implies a possible genetic effect (of the respective allele or genotype) on the aging-related decline in stress
resistance.

2.1 Likelihood function for genetic sub-sample
Assume that there are NGEN individuals in the genetic sub-sample of a longitudinal study, i.e., for whom
information on the genetic marker is available. For individuals from this sub-sample, the values of G are
known. Denote by NGEN

g the number of individuals in the genetic sub-sample with G = g, g = 0, 1. For
ith individual from the genetic sub-sample, the longitudinal study also contains ni + 1 measurements of
physiological indices Z at ages tij , j = 0 . . . ni, which we will denote by zi(ti0),zi(ti1), . . .,zi(tini

). Also, data



on mortality or morbidity (i.e., lifespan or onset of a disease), which may be right-censored, are available
for every individual. Let τi and δi be lifespan (or age at onset of a disease) and the censoring indicator
(δi = 1 if the respective event has occurred and δi = 0 for censored individuals) for ith individual. If a
random sampling of individuals in the genetic sub-sample from the entire sample is assumed, then the
following likelihood function can be used to estimate the model parameters for the genetic sub-sample:

LGEN = pN
GEN
1 (1− p)N

GEN
0

NGEN
1∏
i=1

LGENi (1)
NGEN

0∏
i=1

LGENi (0). (3)

The products in (3) are calculated over individuals with respective values G = g, g = 0, 1. LGENi (g) is
the likelihood for ith individual with G = g and is given by

LGENi (g) = µ̄i(g, τi)δi exp

{
−
τi∫
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}
ni∏
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2×
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2
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)}
,

(4)

where the hazard rate at age t for ith individual with G = g, µ̄i(g, t), is given by (see Yashin et al. 1985,
2007)

µ̄i(g, t) = µ0(g, t) +
(
mi(g, t)− f(g, t)

)∗
Q(g, t)

(
mi(g, t)− f(g, t)

)
+ Tr

(
Q(g, t)γi(g, t)

)
. (5)

Functions mi(g, t) and γi(g, t) in (4) and (5) are mean and variance of the conditional distribution
P (Zt ≤ z |G = g, T > t ), which satisfy the ordinary differential equations (see Yashin et al. 1985, 2007)

dmi(g, t)
dt

= a(g, t)
(
mi(g, t)− f1(g, t)

)
− 2γi(g, t)Q(g, t)

(
mi(g, t)− f(g, t)

)
, (6)

dγi(g, t)
dt

= a(g, t)γi(g, t) + γi(g, t)a(g, t)∗ +B(g, t)B(g, t)∗ − 2γi(g, t)Q(g, t)γi(g, t), (7)

at the intervals between the observation times, [ti0, t
i
1), [ti1, t

i
2),. . . ,[tini−1, t

i
ni

),[tini
, τi), with initial condi-

tions zi(ti0),. . . ,zi(tini
), and γg,0, 0, . . ., 0, respectively. Here mi(g, tij−) = limt↑tij m

i(g, t), γi(g, tij−) =
limt↑tij γ

i(g, t), j > 0, tini
is the age of the latest measurement of the physiological indices before the

event/censoring at τi, and
∣∣γi(g, tij−)

∣∣ is the determinant of the matrix γi(g, tij−), g = 0, 1.

2.2 Likelihood function for non-genetic sub-sample

Assume that there are NNG individuals in the non-genetic sub-sample. For individuals from the non-
genetic sub-sample, only information on measurements of physiological indices and mortality/morbidity
data from the longitudinal study are available, whereas information on the genetic marker is not collected
(i.e., the value of G is unknown). Nevertheless, the non-genetic sub-sample is a discrete mixture of
carriers and non-carriers of the allele or genotype measured in individuals from the genetic sub-sample.
Assuming a random sampling of individuals in the genetic sub-sample, the proportions of carriers and
non-carriers of respective allele or genotype in genetic and non-genetic sub-samples are about the same.
Then, the likelihood function for the data from the non-genetic sub-sample can be constructed for such
a heterogeneous population as follows:

LNG =
NNG∏
i=1

(
pLGENi (1) + (1− p)LGENi (0)

)
, (8)

where respective LGENi (g), g = 0, 1, for ith individual from the non-genetic sub-sample are calculated
from (4).



2.3 Likelihood function for joint analysis of genetic and non-genetic sub-samples
The likelihood function for the joint analysis of genetic and non-genetic sub-samples is the product of
respective likelihoods constructed for the genetic and non-genetic sub-samples:

L = LGENLNG, (9)

where LGEN and LNG are given by (3) and (8).
Note that, although the likelihood functions for the genetic and non-genetic sub-samples have different

structures, they depend on the same parameters (those of functions µ0(G, t), Q(G, t), f(G, t), f1(G, t),
a(G, t), and B(G, t)). This means that the joint analysis of combined genetic and non-genetic sub-samples
will improve the accuracy of parameter estimates compared to the analysis that uses data from the genetic
sub-sample alone.

3 Discussion

The model described in the previous section allows for: 1) incorporation of essential mechanisms of aging-
related changes in organisms that are not directly measured in longitudinal data but can be estimated
from individual age-trajectories of physiological indices and data on mortality or morbidity; 2) evaluation
of indirect genetic effects on processes of aging mediated by age-trajectories of physiological indices
measured in a longitudinal study; and 3) joint analyses of genetic and non-genetic sub-samples to increase
the accuracy of estimates compared to analyses that use information from the genetic sub-sample alone.

The model assumed a biologically-justified quadratic (J- or U-shape) form of the hazard rate. Al-
though it is well motivated by available empirical observations, in applications it may be also necessary
to assume other functional forms of hazard rates. Note that the other functional forms of hazard rate
can be analyzed within the approach as well, for example, modifications of the Cox proportional hazards
model that is extensively used in various epidemiological studies (see Supplementary Material in Arbeev
et al. 2009).

The approach outlined here is not restricted to genetic analyses and it can be applied to analyses of
any similar type of “incomplete” data. That is, it can be performed for any discrete (or ”discretized”
continuous), time-independent covariate which is available only for a sub-sample of individuals from the
entire longitudinal dataset.
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