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Abstract

This paper introduces a simple index that helps to assess the degree of aging or rejuvenation
of repairable systems. The index ranges from -1 to 1. It is negative for the point processes
with decreasing ROCOF and is positive for the point processes with increasing ROCOF.

Index Terms - aging, rejuvenation, homogeneity, non-homogeneity.

ACRONYMS

CDF cumulative distribution function
CIF cumulative intensity function
GPR G-renewal process
HPP homogeneous Poison process
NHPP non-homogeneous Poison process PP point process
ROCOF rate of occurrence of failures
RP renewal process
TTF time to failure

1 Introduction

In reliability and risk analysis, the terms aging and rejuvenation are used for describing reliability behavior
of repairable as well as non-repairable systems (components). The repairable systems reliability is modeled
by various point processes (PP), such as the homogeneous Poisson process (HPP), non-homogeneous
Poisson process (NHPP), renewal process (RP), G-renewal process (GRP), to name a few. Among these
PP, some special classes are introduced in order to model the so-called improving and deteriorating
systems. An improving (deteriorating) system is defined as the system with decreasing (increasing) rate
of occurrence of failures (ROCOF). It might be said that among the point processes used as models for
repairable systems, the HPP (having a constant ROCOF) is a basic one.

In many practical situations, it is important to make an assessment how far a given point process
deviates from the HPP, which can be considered as a simple and, therefore, strong competing model.
Note that if the HPP turns out to be an adequate model, the respective system is considered as non-aging,
so that it does not need any preventive maintenance (as opposed to the case, when a repairable system
reveals aging).

The statistical tools helping to find out if the HPP is an appropriate model are mainly limited to
statistical hypothesis testing, in which the null hypothesis is

H0 : ”The times between successive events (interarrival times) are independent and identically expo-
nentially distributed ”, and the alternative hypothesis is

H1 : ”The system is either aging or improving.”

The most popular hypothesis testing procedures for the considered type of problems are the Laplace
test (Rausand & Hoyland, 2004) and the so-called Military Handbook test (AMSAA, 1981). It should be
noted that these procedures do not provide a simple measure quantitatively indicating how different the
ROCOF of a given point process is, compared to the respective constant ROCOF of the competing HPP
model.



Among such goodness-of-fit tests, one can mention the G-test, which is based on the so-called Gini
statistic (Gail & Gastwirth, 1978). In turn, the Gini statistics originates from the so-called Gini coefficient
used in macroeconomics for comparing an income distribution of a given country with the uniform
distribution covering the same income interval. The Gini coefficient is used as a measure of income
inequality (Sen, 1997). The coefficient takes on the values between 0 and 1. The closer the coefficient
value to zero, the closer the distribution of interest is to the uniform one. The interested reader could
find the index values sorted by countries in (List of Countries by Income Inequality, 2007) that includes
the UN and CIA data.

In the following sections, we introduce a Gini-type coefficient for the repairable systems. The coef-
ficient takes on the values between -1 and 1. The closer it is to zero, the closer the PP of interest is to
the HPP. A positive (negative) value of this coefficient will indicate whether a given repairable system is
deteriorating (improving). For the sake of simplicity, this Gini-type coefficient will be referred to as GT
coefficient and denoted as C.

2 GT coefficient for repairable systems

2.1 Basic Definitions

A point process (PP) can be informally defined as a mathematical model for highly localized events
distributed randomly in time. The major random variable of interest related to such processes is the
number of events, N(t), observed in time interval [0, t]. Using the nondecreasing integer-valued function
N(t), the point process {N(t), t ≥ 0} is introduced as the process satisfying the following conditions:

1. N(t) ≥ 0

2. N(0) = 0

3. If t2 > t1, then N(t2) ≥ N(t1)

4. If t2 > t1, then [N(t2)−N(t1)] is the number of events occurred in the interval (t1, t2]

The mean value E[N(t)] of the number of events N(t) observed in time interval [0, t] is called cumu-
lative intensity function (CIF), mean cumulative function (MCF), or renewal function. In the following,
term cumulative intensity function is used. The CIF is usually denoted by Λ(t):

Λ(t) = E[N(t)]

Another important characteristic of point processes is the rate of occurrence of events. In reliability
context, the events are failures, and the respective rate of occurrence is abbreviated to ROCOF. The
ROCOF is defined as the derivative of CIF with respect to time, i.e.,

λ(t) =
dΛ(t)
dt

When an event is defined as a failure, the system modeled by a point process with an increasing
ROCOF is called aging (sad, unhappy, or deteriorating) system. Analogously, the system modeled by a
point process with a decreasing ROCOF is called improving (happy, or rejuvenating) system.

The distribution of time to the first event (failure) of a point process is called the underlying dis-
tribution. For some point processes, this distribution coincides with the distribution of time between
successive events; for others it does not.

2.2 GT Coefficient

Consider a PP having an integrable over [0, T ] cumulative intensity function, Λ(t). It is assumed that
the respective ROCOF exists, and it is increasing function over the same interval [0, T ], so that Λ(t)
is concave upward, as illustrated by Figure 1. Further consider the HPP with CIF ΛHPP (t) = λt that
coincides with Λ(t) at t = T , i.e., ΛHPP (T ) = Λ(T ), - see Figure 1.



Figure 1: Graphical interpretation of GT coefficient for a point process with an increasing ROCOF.

Then, for a given time interval [0, T ] the GT coefficient is defined as

C(T ) = 1−

T∫
0

Λ(t)dt

0.5TΛ(T )
= 1−

2
T∫
0

Λ(t)dt

TΛ(T )
(1)

The smaller the absolute value of the GT coefficient, the closer the considered PP is to the HPP;
clearly, for the HPP, C(T ) = 0. GT coefficient satisfies the following inequality: −1 < C(T ) < 1. It
is obvious that for a PP with an increasing ROCOF, the GT coefficient is positive and for a PP with
a decreasing ROCOF, the coefficient is negative. One can also show that the absolute value of GT
coefficient C(T ) is proportional to the mean distance between the Λ(t) curve and the CIF of the HPP.

For the most popular NHPP model - the power law model with the underlying Weibull CDF - the
GT coefficient is expressed in a closed form:

C(T ) = 1− 2
β + 1

, (2)

where β is the shape parameter of the underlying Weibull distribution.
Some examples of applying the GT coefficient to other PP commonly used in reliability and risk

analysis are given in Table 1.

Table 1: GT coefficients of some PP over time interval [0, 2]. Weibull with scale parameter α = 1 is used
as the underlying distribution.

Stochastic Shape parameter Repair GT
Point of Underlying Effectiveness Coefficient

Process Weibull Distribution Factor
HPP 1 N/A 0

NHPP 1.1 1 0.05
NHPP 2 1 0.33
NHPP 3 1 0.50

RP 2 0 0.82
GRP 2 0.5 0.21

Note: the GT coefficient for RP and GRP was obtained using numerical techniques.

Repair effectiveness factor in Table 1 refers to the degree of restoration upon the failure of a repairable
system; see (Kijima & Sumita, 1986), (Kaminskiy & Krivtsov, 1998). This factor equals zero for an RP,



one - for an NHPP and is greater-or-equal-to zero - for a GRP (of which the RP and the NHPP are the
particular cases).

As a concluding remark, we would like to note that a similar index can be used in the context of
non-reparable systems (components) as well. For further details, please refer to Kaminskiy & Krivtsov
(2008).
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