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Abstract

Measures of divergence or discrepancy are used either to measure mutual information con-
cerning two variables or to construct model selection criteria. In this paper we are focusing
on divergence measures that are based on a class of measures known as Csiszar’s divergence
measures. In particular, we propose a measure of divergence between residual lives of two
items that have both survived up to some time t as well as a measure of divergence between
past lives, both based on Csiszar’s class of measures. Furthermore, we derive properties of
these measures and provide examples based on the Cox model and frailty or transformation
models.

1 Introduction

A measure of divergence is used as a way to evaluate the distance (divergence) between any two popula-
tions or functions. In the present work, we concentrate on divergence measures that are based on a class
of measures known as Csiszar’s family of divergence measures or Csiszar’s ϕ-divergence (Csiszar, (1963);
Ali and Silvey, (1966)).

An issue of fundamental importance in Statistics is the investigation of Information Measures. These
measures are classified in different categories and measure the quantity of information contained in the
data with respect to a parameter θ, the divergence between two populations or functions, the information
we get after the execution of an experiment and other important information according to the application
they are used for. Traditionally, the measures of information are classified in four main categories namely
divergence - type, entropy - type, Fisher - type and Bayesian - type.

Measures of divergence between two probability distributions have a very long history initiated by
the pioneer work of Pearson, Mahalanobis, Lévy and Kolmogorov. Among the most popular measures
of divergence are the Kullback-Leibler measure of divergence and the Csiszar’s ϕ-divergence family of
measures. Recently, the BHHJ divergence measure was proposed by Basu et al. (1998) and generalized
to the BHHJ family of measures by Mattheou et al. (2009).

Ebrahimi and Kirmani (1996a) introduced a measure of discrepancy between the lifetimes X and Y of
two items at time t. In survival analysis or in reliability we might know the current age t of a biomedical
or technical system. We need to take this information into consideration when we compare two systems
or populations. Ebrahimi and Kirmani (1996a) achieved this by replacing the distribution functions of
the random variables X and Y in the Kullback-Leibler divergence of X and Y , by the distributions of
their residual lifetimes. Di Crescenzo and Longobardi (2004) define a dual measure of divergence which
constitutes a distance between past life distributions.

2 Generalized Measures of Divergence

Let X and Y be absolutely continuous, non-negative random variables that describe the lifetimes of two
items. Let f(x), F (x) and F (x) be the density function, the cumulative distribution function and the
survival function of X respectively. Let also g(x), G(x) and G(x) be the density function, the cumulative
distribution function and the survival function of Y respectively. Let hX(x) = f(x)/F (x) and hY (x) =
g(x)/G(x) be the hazard rate functions of X and Y while τX(x) = f(x)/F (x) and τY (x) = g(x)/G(x)
are the reversed hazard rate functions of X and Y . Without loss of generality we assume throughout the
paper that the support of f and g is (0, +∞).



The Kullback-Leibler distance between F and G is defined by

IX,Y =
∫ ∞

0

f(x) log
(

f(x)
g(x)

)
dx (1)

where log denotes the natural logarithm. A generalization of this distance is defined as

Iϕ
X,Y =

∫ ∞

0

g(x)ϕ
(

f(x)
g(x)

)
dx (2)

and is known as Csiszar’s family of measures of divergence.
When the function ϕ is defined as ϕ(u) = u log u or ϕ(u) = u log u + 1 − u then the above measure

reduces to the Kullback-Leibler measure. If ϕ(u) = (1 − u)2, Csiszar’s measure yields the Pearson’s
chi-square divergence. If ϕ(u) =

(
ua+1 − u − a(u − 1)

)
/(a(a + 1)) we obtain the Cressie and Read

power divergence (Cressie and Read, (1984)), a 6= 0,−1. If ϕ(u) = (1−√u)2, we obtain the Matusita’s
divergence (Matusita, (1967)).

We define also the function

ϕ(u) = 1− (1 +
1
a
)u +

u1+a

a
, a > 0

which is related to a recently proposed measure of divergence (BHHJ power divergence, Basu et al.
(1998)). Another function that we consider is

ϕ(u) = u1+a − (1 +
1
a
)ua +

1
a
, a > 0.

These last two functions are special cases of the BHHJ family of measures of divergence proposed by
Mattheou et al. (2009)

Ia
X (g, f) = Eg

(
ga(X)ϕ

(
f(X)
g(X)

))
=

∫
g1+a (z) ϕ

(
f(z)
g(z)

)
dµ, a > 0, (3)

where µ represents the Lebesgue measure. Appropriately chosen functions ϕ(·) give rise to special mea-
sures mentioned above.

Ebrahimi and Kirmani (1996a) introduced a measure of discrepancy between X and Y at time t as
follows

IX,Y (t) =
∫ ∞

t

f(x)
F (t)

log
(

f(x)/F (t)
g(x)/G(t)

)
dx, t > 0. (4)

A dual measure is defined in Di Crescenzo and Longobardi (2004) which constitutes a distance between
past lifetimes

IX,Y (t) =
∫ t

0

f(x)
F (t)

log
(

f(x)/F (t)
g(x)/G(t)

)
dx, t > 0. (5)

In this paper we propose two measures of discrepancy which are based on the Csiszar’s ϕ-divergence
family, namely, the ϕ-distance between residual lifetimes

Iϕ
X,Y (t) =

∫ ∞

t

g(x)
G(t)

ϕ

(
f(x)/F (t)
g(x)/G(t)

)
dx, t > 0 (6)

and the ϕ-distance between past lifetimes

I
ϕ

X,Y (t) =
∫ t

0

g(x)
G(t)

ϕ

(
f(x)/F (t)
g(x)/G(t)

)
dx, t > 0. (7)

where the function ϕ belongs to a class of convex functions Φ that satisfy some regularity conditions.



3 Measures in Survival Analysis and Reliability Models

3.1 Proportional hazards and proportional reverse hazards models
In this section we examine properties of the proposed measures of divergence and find various discrim-
ination measures in cases like the proportional hazards model, the proportional reverse hazards model
and the frailty or transformation models. For the latter case, we provide the ϕ-distance between the
respective residual and past lifetimes associated with the Cox and frailty models respectively.

For the case of proportional hazards let X and Y be random variables with distribution functions F
and G respectively for which it holds that

G(x) = (F (x))θ for all x > 0 and θ > 0. (8)

Theorem 1. The discrimination measure Iϕ
X,Y (t) between the random variables X and Y which satisfy

the proportional hazards assumption (8) is independent of t and is given as

Iϕ
X,Y (t) =

∫ 1

0

ϕ

(
1

θyθ−1

)
dyθ (9)

(ii) If Iϕ
X,Y (t) is independent of t, then there exists a constant θ > 0 such that (8) holds.

Let now X and Y be random variables with distribution functions F and G respectively which satisfy
the proportional hazards assumption but with reverse proportionality, that is, F (x) = (G(x))θ. In this
case, the discrimination measure takes the form

Iϕ
X,Y (t) =

∫ 1

0

ϕ
(
θyθ−1

)
dy. (10)

For the proportional reverse hazards model which is defined as

G(x) = (F (x))θ for all x > 0 and θ > 0 (11)

the following result holds.

Theorem 2. (i) The discrimination measure I
ϕ

X,Y (t) between the random variables X and Y which
satisfy the proportional reverse hazards assumption (11) is independent of t and is given as

I
ϕ

X,Y (t) =
∫ 1

0

ϕ

(
1

θyθ−1

)
dyθ (12)

(ii) If I
ϕ

X,Y (t) is independent of t, then there exists a constant θ > 0 such that (11) holds.
Let now X and Y be random variables with distribution functions F and G respectively which

satisfy the proportional reverse hazards assumption but with reverse proportionality. In that case, the
discrimination measure I

ϕ

X,Y (t) is given by (10).

3.2 Frailty or transformation model versus Cox proportional hazards model
Let now X and Y be random variables with distribution functions F1 and F2, probability density functions
f1 and f2 and survival functions S1 and S2 respectively. Let H be the baseline cumulative hazard function
and h the baseline intensity hazard function. Let X follow a Cox model (Cox 1972) under which

S1(x) = e−θH(x), θ > 0. (13)

Let also Y follow a frailty model under which (Vonta 1996)

S2(x) = e−G(θH(x)), θ > 0 (14)

where the function G is assumed to be concave, increasing with G(0) = 0 and G(∞) = ∞.
We have derived the usual divergence between the distributions of X and Y using the Kullback-Leibler

and the Csiszar’s divergence as well as the ϕ-distance between the respective past and residual lifetimes
of X and Y . We provide here for the latter cases the relative results which are stated below.



Theorem 3. The discrimination measure Iϕ
X,Y (t) between the random variables X and Y which follow

the Cox proportional hazards model and the frailty or transformation model (14) respectively, is given as

Iϕ
X,Y (t) =

∫ ∞

θH(t)

e−G(y)G′(y)
e−G(θH(t))

ϕ

(
e−y/e−θH(t)

e−G(y)G′(y)/e−G(θH(t))

)
dy (15)

for t > 0.

Theorem 4. The discrimination measure I
ϕ

X,Y (t) between the random variables X and Y which follow
the Cox proportional hazards model and the frailty or transformation model (14) respectively, is given as

I
ϕ

X,Y (t) =
∫ θH(t)

0

e−G(y)G′(y)
1− e−G(θH(t))

ϕ

(
e−y/1− e−θH(t)

e−G(y)G′(y)/1− e−G(θH(t))

)
dy (16)

for t > 0.
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