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Abstract

In this paper an advanced safety system-protected object complex reliability model has been
proposed, assuming time redundancy caused by protected object inertia. The model can be
used to estimate such reliability indices as mean time to failure and probability of failure prior
to time t.

1 Introduction

Systems with time redundancy are common in the engineering practice. There are some methods available
for the estimation of reliability indices of such systems (Gnedenko and Ushakov 1995). But there is a
lack of reliability models for safety system-protected object complex with time redundancy caused by
protected object inertia. In the present study we set out to analyze the reliability of such system.
We follow Pereguda (2001) in assuming that the operation of the complex can be described using a
superposition of alternating renewal processes. Our objective is to provide an asymptotic estimation for
such reliability indices as mean time to failure and probability of failure prior to time t.

2 Problem formulation

Consider a safety system-protected object complex. Let safety system and protected object are repairable.
Let safety system and protected object are restored to an as-good-as-new state. It is assumed that safety
system failures can be detected only during preventive maintenance. All failures are supposed to be
independent. By χ1 denote the time to the first protected object failure. By χi, i = 2, 3, . . . denote the
time to the protected object failure after the (i − 1)-th repair. Let χi, i = 1, 2, . . . be independent and
identically distributed (i.i.d.) random variables. By γi denote the time to the i-th repair of the protected
object. Let γi, i = 1, 2, . . . be i.i.d. random variables. Suppose γi, i = 1, 2, . . . are renewal points of
the operation process of the complex. By ξ1 denote the time to the first failure of the safety system.
By ξi, i = 2, 3, . . . denote the time to the failure of the safety system after the (i − 1)-th repair. Let ξi,
i = 1, 2, . . . be i.i.d. random variables. By ηi denote the time to the i-th repair of the safety system. Let
ηi, i = 1, 2, . . . be i.i.d. random variables. Suppose ηi, i = 1, 2, . . . are renewal points of the operation
process of the safety system. Let the preventive maintenance of the safety system is performed at periodic
time intervals T . Let the duration of the preventive maintenance of the safety system is θ. By Un denote
the moment of the n-th failure of the safety system. By Vn denote the moment of the n-th repair of the
safety system. Then the safety system-protected object complex fails when

Un ≤ χ < Vn − α,
α ≤ Vn − Un

or when
Vn−1 + T ≤ χ < Vn−1 + (T + θ)− α;

Vn−1 + (T + θ) + T ≤ χ < Vn−1 + 2(T + θ)− α;
. . .

Vn−1 +
([

ξn
T + θ

]
− 1
)

(T + θ) + T ≤ χ < Vn−1 +
[

ξn
T + θ

]
(T + θ)− α;

α < θ



where α is an excess time and [x] is an integer part of x. It is assumed that α is a random variable. By ω
denote the time to the first failure of the safety system-protected object complex. Our aim is to estimate
mean time to failure E[ω] and Fω(t) = Pr{ω ≤ t}.

3 Main results

Since the operation process of the safety system is an alternating renewal process, it follows that

Un =
n∑
i=1

ξi +
n−1∑
i=1

(
(T + θ)−

{
ξi

T + θ

}
(T + θ)

)
+
n−1∑
i=1

ηi,

Un =
n∑
i=1

ξi +
n∑
i=1

(
(T + θ)−

{
ξi

T + θ

}
(T + θ)

)
+

n∑
i=1

ηi.

where {x} is a fractional part of x. Taking into account the failure condition, we obtain the probability
of a failure during a renewal interval:

q =
∞∑
n=1

∞∫
0

M

IUn≤x<Vn−αI∆n>0

+
[ ξn
T+θ ]∑
i=1

IVn−1+(i−1)(T+θ)+T≤x<Vn−1+i(T+θ)−αIζ>0

 dFχ(x)

where ∆n = ηn + σn − α, σn = T + θ −
{

ξn
T+θ

}
(T + θ), ζ = θ − α and IA is an indicator function of the

event A. The application of renewal limit theorems (Rausand and Høyland 2004) yields

q ≈ 1

Mη + (T + θ) + (T + θ)M
[

ξ
T+θ

]
 ∞∫

0

ydF∆(y) +M

[
ξ

T + θ

] ∞∫
0

ydFζ(y)

 .

The Monte-Carlo method can be used to estimate
∞∫
0

ydF∆(y) and
∞∫
0

ydFζ(y).

Since the operation process of the complex is a superposition of alternating renewal processes, it
follows that

ω =
ν−1∑
i=1

(χi + βi + γi) + χν + α,

where
P (ν = n) = q(1− q)(n−1)

and
0 ≤ βi < α.

We obviously have

Fω(t) = P (ω ≤ t) = P

(
ν−1∑
i=1

(χi + βi + γi) + χν + α ≤ t

)
. (1)

Applying the Laplace– Stieltjes transform to (1), we obtain

F̃ω(s) =
qF̃α(s)F̃χ(s)

1− (1− q)F̃χ(s)F̃β(s)F̃γ(s)
. (2)



Taking into account (2), we obtain

Mω = Mχ+Mα+
1− q
q

(Mχ+Mβ +Mγ).

Using stochastic ordering (Stoyan 1983), we get following estimations

Mχ+Mα+
1− q
q

(Mχ+Mγ) ≤Mω ≤Mχ+Mα+
1− q
q

(Mχ+Mα+Mγ),

L−1

[
qF̃α(s)F̃χ(s)

1− (1− q)F̃χ(s)F̃α(s)F̃γ(s)

]
≤ Fω(t) ≤ L−1

[
qF̃α(s)F̃χ(s)

1− (1− q)F̃χ(s)F̃γ(s)

]
where L−1[f̃(s)] is an inverse Laplace– Stieltjes of f̃(s).

Consider now the following trivial example. Suppose Fχ(t) = 1 − e−λχt, Fγ(t) = 1 − e−λγt, Fξ(t) =
1− e−λξt, Fη(t) = 1− e−ληt, Fα(t) = 1− e−λαt. Therefore

M

[
ξ

T + θ

]
=

e−λξ(T+θ)

1− e−λξ(T+θ)
,

q ≈ 1
1
λη

+ (T + θ) + (T + θ)M
[

ξ
T+θ

]
 ∞∫

0

ydF∆(y) +M

[
ξ

T + θ
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0

ydFζ(y)

 ,

1
λχ

+
1
λα

+
1− q
q

(
1
λχ

+
1
λγ

)
≤Mω ≤ 1

λχ
+

1
λα

+
1− q
q

(
1
λχ

+
1
λα

+
1
λγ

)
.

The Monte-Carlo method can be used to estimate
∞∫
0

ydF∆(y) and
∞∫
0

ydFζ(y).

4 Conclusion.

A new reliability model for a safety system-protected object complex is presented in this paper. The
proposed model can be easily used for different types of objects like nuclear power plants and others.
This method can be used to estimate such reliability indices as mean time to failure and probability of
failure prior to time t.
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